Cost-Sensitive Learning of SVM for Ranking

نویسندگان

  • Jun Xu
  • Yunbo Cao
  • Hang Li
  • Yalou Huang
چکیده

In this paper, we propose a new method for learning to rank. ‘Ranking SVM’ is a method for performing the task. It formulizes the problem as that of binary classification on instance pairs and performs the classification by means of Support Vector Machines (SVM). In Ranking SVM, the losses for incorrect classifications of instance pairs between different rank pairs are defined as the same. We note that in many applications such as information retrieval the negative effects of making errors between higher ranks and lower ranks are larger than making errors among lower ranks. Therefore, it is natural to bring in the idea of cost-sensitive learning to learning to rank, or more precisely, to set up different losses for misclassification of instance pairs between different rank pairs. Given a cost-sensitive loss function we can construct a Ranking SVM model on the basis of the loss function. Simulation results show that our method works better than Ranking SVM in practical settings of ranking. Experimental results also indicate that our method can outperform existing methods including Ranking SVM on real information retrieval tasks such as document search and definition search.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost-Sensitive Support Vector Ranking for Information Retrieval

In recent years, the algorithms of learning to rank have been proposed by researchers. However, in information retrieval, instances of ranks are imbalanced. After the instances of ranks are composed to pairs, the pairs of ranks are imbalanced too. In this paper, a cost-sensitive risk minimum model of pairwise learning to rank imbalanced data sets is proposed. Following this model, the algorithm...

متن کامل

A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate

Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...

متن کامل

From Ordinal Ranking to Binary Classification

We study the ordinal ranking problem in machine learning. The problem can be viewed as a classification problem with additional ordinal information or as a regression problem without actual numerical information. From the classification perspective, we formalize the concept of ordinal information by a cost-sensitive setup, and propose some novel cost-sensitive classification algorithms. The alg...

متن کامل

Cost-Sensitive Support Vector Machines

A new procedure for learning cost-sensitive SVM(CS-SVM) classifiers is proposed. The SVM hinge loss is extended to the cost sensitive setting, and the CS-SVM is derived as the minimizer of the associated risk. The extension of the hinge loss draws on recent connections between risk minimization and probability elicitation. These connections are generalized to cost-sensitive classification, in a...

متن کامل

RV-SVM: An Efficient Method for Learning Ranking SVM

Learning ranking (or preference) functions has become an important data mining task in recent years, as various applications have been found in information retrieval. Among rank learning methods, ranking SVM has been favorably applied to various applications, e.g., optimizing search engines, improving data retrieval quality. In this paper, we first develop a 1-norm ranking SVM that is faster in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006